Sensitivity of Simulated Boreal Fire Dynamics to Uncertainties in Climate Drivers
نویسندگان
چکیده
Projected climatic warming has direct implications for future disturbance regimes, particularly fire-dominated ecosystems at high latitudes, where climate warming is expected to be most dramatic. It is important to ascertain the potential range of climate change impacts on terrestrial ecosystems, which is relevant to making projections of the response of the Earth system and to decisions by policymakers and land managers. Computer simulation models that explicitly model climate–fire relationships represent an important research tool for understanding and projecting future relationships. Retrospective model analyses of ecological models are important for evaluating how to effectively couple ecological models of fire dynamics with climate system models. This paper uses a transient landscape-level model of vegetation dynamics, Alaskan Frame-based Ecosystem Code (ALFRESCO), to evaluate * Corresponding author address: T. Scott Rupp, Department of Forest Sciences, University of Alaska Fairbanks, 368 O’Neill Bldg., Fairbanks, AK 99775 E-mail address: [email protected] Earth Interactions • Volume 11 (2007) • Paper No. 3 • Page 1
منابع مشابه
Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.
Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable...
متن کاملSensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models
Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub-European scale, and we investigate uncertainties in the relative importance of the determining factors. We ...
متن کاملModeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest
In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of int...
متن کاملPalaeodata-informed modelling of large carbon losses from recent burning of boreal forests
Wildfires play a key role in the boreal forest carbon cycle1,2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictionsmaybe compromisedbecausebrief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-ter...
متن کاملModeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
[1] In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce ecosystem in Canada, the age-dependent patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007